Upload deadline: -, CET
The chocolate bar Twix is 32 % coating. Assume that it has a shape of a cylinder with a radius of 10 mm. Neglect the coating of the base. How thick is the coating?
Bonus: Think of a better model of said bar.
Lukáše překvapil objem.
We have a wooden sphere at a height of $h=1\;\mathrm{m}$ above the surface of the Earth which has a perimeter of $R_{Z}=6378\;\mathrm{km}$ and a weight of $M_{Z}=5.97\cdot 10^{24}\;\mathrm{kg}$. The sphere has a perimeter of $r=1\;\mathrm{cm}$ and is made of a wood which has the density of $ρ=550\;\mathrm{kg}\cdot \mathrm{m}^{-3}$. Assume that the Earth has an electric charge of $Q=5C$. What is the charge $q$ that the sphere has to have float above the surface of the Earth? How does this result depend on the height $h?$
Karel přemýšlel, co zadat jednoduchého.
We have a container of a constant cross section, which contains an ideal gas and a piston at a height of $h$. First we compress the air quickly (practically adiabatically) by moving the piston to a height of $h⁄2$, we hold it there until thermal equilibrium with its surroundings is reached, and then we let it go. To what height will the piton rise immediately? What is the height that it will reach after a very long time? Draw a $pV$ diagram.
Karel přemýšlel nad pístem.
It is known that the Moon when it is full has the apparent magnitude of approximately -12 mag and the Sun during the day has the apparent magnitude of -27 mag. Try to figure out what is the apparent magnitude of the Moon directly before a solar eclipse, if you know that the albedo of the Earth is approximately 0.36 and the albedo of the Moon 0.12. Presume that light after reflection disperes the same way on the surface of both the Moon and Earth.
Janči byl oslepený.
A truncated cone that is the upside down (the hole is open downwards) may be held in the air by a stream of water which originates from the ground with a constant mass flowrate and an intial velocity $v_{0}$. At what height above the surface of the Earth will the cone levitate ?
Bonus: Explore the stability of the cone.
Radomír pil až do dna.
Estimate how much nuclear fuel get used by an atomic powerplant to generate 1 MWh of electrical energy that people use at home. Compare it with the usage offuel in a thermal powerplant. Don't forget to think about all posible ways that energy gets lost.
Bonus: Include the energy that is required to transport the fuel into your solution.
Karel přemýšlel nad ČEZem.
Let us have an inclined plane on which we place a ball and we give it kinetic energy so that it will begin rolling upwards without slipping. Measure the relationship between the velocity of the ball and time and determine the loss of energy as a function of time. The inclined plane should have an angle of at least $α10°$ with the horizontal. Do not forget to describe the parameters of your ball.
Karel se zamyslel nad výrokem koulelo se koulelo.
$$F_\;\mathrm{d} = m a_\mathrm{d} = \frac{\alpha}{r^2}\,,$$
where $ris$ the radius of a circle and $α$ is some constant. Then
Tip Youshould have encountered radial motion in your high-school education and also the relationships between displacement, velocity and acceleration. Use them and then the integration of action along the circumference of the circle with a constant $r$ shall become easier (constant quanties can be easily factored out of the integral). Don't forget that the path integral of „nothing“ is merely the length of the integrated path.
$$\mathbf{y}(t)&=\left(2t,t\right) \,,\\\mathbf{y}(t)&=\left(1-\cos{(\pi t)} \frac{1}{\pi}\sin{2\pi t}, t\right) \,,\\\mathbf{y}(t)&=\left(2t, \frac{\;\mathrm{e}^t-1 t^2(t-1)}{\mathrm{e}-1}\right) \,,$$
where e is the Euler number. Tip First find the derivative of $\textbf{y}(t)$, put it into the equation for action and integrate.