Search
astrophysics (85)biophysics (18)chemistry (24)electric field (71)electric current (76)gravitational field (81)hydromechanics (146)nuclear physics (44)oscillations (57)quantum physics (31)magnetic field (43)mathematics (89)mechanics of a point mass (298)gas mechanics (87)mechanics of rigid bodies (221)molecular physics (72)geometrical optics (78)wave optics (65)other (167)relativistic physics (37)statistical physics (21)thermodynamics (155)wave mechanics (51)
mechanics of rigid bodies
(7 points)4. Series 35. Year - 4. Analogy
Assume we have two linear springs with elastic modulus $E = 2{,}01 \mathrm{GPa}$ and a piston with viscosity $\eta = 9,8 \mathrm{GPa\cdot s}$. The dependence of stress $\sigma $ on relative extension $\epsilon $ is characterized by formula $\sigma \_s = E\epsilon \_s$ for spring, and by formula $\sigma \_d = \eta \dot {\epsilon }\_d$ for piston, where the dot represents the time derivative (Newton's notation). We connect a spring of length $l\_s$ and a piston of length $l\_d$ into series, and then we connect the other spring of length $l\_p$ in parallel to them. Abruptly, we stretch the entire system into the state of $\epsilon _0 = 0{,}2$, and we hold the extension constant. Determine, in what time (from stretching) will the stress decrease to half of the original value, if $\frac {l\_s}{l\_p} = 0{,}5$ holds.
Mirek was thinking about problems while taking an exam.
(12 points)4. Series 35. Year - E. Useful Coin
Measure at least three physical properties of the smallest coin of legal tender in your country. We consider macroscopic dimensions as one property. We evaluate not only the accuracy of the measurement and the detail of the description but also the originality in the selection of quantities.
Karel wanted the participants to observe the money.
(3 points)6. Series 34. Year - 1. figure skater
Assume a figure skater, rotating around her transverse axis with her arms spread with an angular velocity $\omega $. Find her angular velocity $\omega '$, that she will rotate with her arms positioned close to her body. What work does she have to perform in order to get her arms close to her body? Finding a proper approximation of the figure skater's body is left to the reader.
Skřítek procrastinated by watching figure skating.
(12 points)6. Series 34. Year - E. spilled glass
Take a glass, can or any other cylindrically symmetrical container. Measure the relationship between the angle of inclination of the container when it tips over and the amount of water inside of it. We recommend to use a container with greater ratio of its height to the diameter of its base.
Jindra was watering the table.
(10 points)5. Series 34. Year - 5. rheonomous catapult
Let us have a thin rectangular panel that rotates around its horizontally oriented edge at a constant angular velocity. At the moment when the panel is in a horizontal position during rotating upwards, we place a small block on it so that its velocity with respect to the panel is zero. How will the block move on the panel if the friction between them is zero? Where do we have to place the block so that it flies away from the panel exactly after a quarter of its turn? Discuss all the necessary conditions that must be met to achieve this. Bonus: What power does the panel transfer on the block and what total work does it do on it?
Vašek was tired of problems with scleronomous bond, so he came up with rheonomous bond.
(3 points)4. Series 34. Year - 2. there is always another spring
Find the work needed to twist a spring from equilibrium position to an angular displacement of $\alpha =60\dg $. We are holding the spring in the twisted position with a torque $M=1{,} \mathrm{N\cdot m}$.
Dodo was hanging laundry on a string.
(5 points)6. Series 33. Year - 3. hung
What weight can be hung on the end of a coat hanger without turning it over? The hanger is made of a hook from very light wire, which is attached to the centre of the straight wooden rod, which length is $l = 30 \mathrm{cm}$ and weight $m=200 \mathrm{g}$. The hook has the shape or circular arc with radius $r=2,5 \mathrm{cm}$ and angular spread $\theta =240 \mathrm{\dg }$. The distance between the centre of the arc and the rod is $h=5 \mathrm{cm}$. Neglect every friction.
Dodo is seeking for a scarce.
(3 points)5. Series 33. Year - 2. will it move?
Jachym wants to pickle cabbage at home, so he buys a cylindrical barrel. He carries it from the shop to the home using underground. We can consider the barrel and its lid as a hollow cylinder with outer dimensions: radius $r$, height $h$ and width of the walls, the base, and the lid is $t$. The barrel is made of a material with density $\rho $. What is the maximum acceleration that the underground can go with, so the free standing barrel does not move in respect to the underground? Coefficient of friction between underground's floor and the barrel is $f$.
Dodo is listening to Jachym's excuses again.
(6 points)5. Series 33. Year - 3. Matěj's dream ball
Exactly on the edge of a table lies a homogenous ball with the radius $r$. Since the equilibrium is „semi-unstable“, the ball eventually starts falling off the table. What will it's angular velocity be during the fall? Assume the ball rolls without slipping.
(12 points)4. Series 33. Year - E. torsional pendulum
Take a homogeneous rod, at least $40 \mathrm{cm}$ long. Attach two cords of the same material (e.g. thread or fishing line) to it, symmetrically with respect to its centre, and attach the other ends of the cords to some fixed body (e.g. stand, tripod) so that both cords would have the same length and they'd be parallel to each other. Measure the period of torsion oscillations of the rod depending on the distance $d$ of the cords, for multiple lengths of the cords, and find the relationship between these two variables. During torsion oscillations, the rod rotates in a horizontal plane and its centre remains still.
Karel wanted to hyponotize participants.