Search
astrophysics (85)biophysics (18)chemistry (24)electric field (71)electric current (76)gravitational field (81)hydromechanics (146)nuclear physics (44)oscillations (57)quantum physics (31)magnetic field (43)mathematics (89)mechanics of a point mass (298)gas mechanics (87)mechanics of rigid bodies (221)molecular physics (72)geometrical optics (78)wave optics (65)other (167)relativistic physics (37)statistical physics (21)thermodynamics (155)wave mechanics (51)
hydromechanics
(3 points)2. Series 36. Year - 1. water channel
Water flows through a water channel of rectangular cross-section, and width $d=10 \mathrm{cm}$. A leaf falls on its surface and starts moving with a velocity of $60 \mathrm{cm\cdot s^{-1}}$. The height of the water in the channel is $h=1{,}3 \mathrm{cm}$. Estimate how long it will take to fill up a $50 \mathrm{l}$ bucket. Comment on the assumptions used in comparison with the real situation.
Dodo was cooling his horsefly bite.
(3 points)1. Series 36. Year - 2. weighing an unknown object
Let us have an ideal scale which we calibrate using a state standard (etalon) with a mass $m\_e = 1,000~000~165 kg$ and a density $\rho \_e = 21~535,40 kg.m^{-3}$. By calibration, we mean that after placing the standard on the scale, we assign to the measured value the mass $m\_e$. The unknown object is weighed under the same conditions in which its volume is $V_0 = 3,242~27 dl$. What mass did we measure if we measured the weight $G = 1,420~12 N$? What is the actual mass of the object? The experiment is conducted at a place with standard gravitational acceleration $g = 9,806~65 m.s^{-2}$ and air density $\rho \_v=1,292~23 kg.m^{-3}$. Take into account that the calibration is linear, and the unloaded scale shows zero.
Karel wanted to use a standard.
(13 points)1. Series 36. Year - E. dense ice
Measure the density of ice.
Karel's previous ice-problem was rejected, so he came up with another one.
(9 points)1. Series 36. Year - P. trains
Estimate the consumption of electrical energy for one trip of the IC Opavan train. The train set consists of seven passenger cars, a 151-series locomotive and is capable of reaching a speed of $v\_{max} = 160 \mathrm{km\cdot h^{-1}}$. For simplicity, consider that all passengers are going from Prague to Opava.
The dwarf takes the train to go home.
(7 points)1. Series 35. Year - 4. fall to the seabed
A cylindrical capsule (Puddle Jumper) with a diameter $d = 4 \mathrm{m}$, a length $l = 10 \mathrm{m}$ and with a watertight partition in the middle of its length is submerged below the ocean surface and falls to the seabed at a speed of $v = 20 \mathrm{ft\cdot min^{-1}}$. At the depth $h = 1~200 ft$, the glass on the front base breaks and the corresponding half of the capsule is filled with water. At what speed will it fall now? How long will it take for the capsule to sink to the bottom at the depth $H=3~000 ft$? Assume that the walls of the capsule are very thin against its dimensions.
Dodo watches Stargate Atlantis.
(5 points)2. Series 34. Year - 3. a car at the bottom of a\protect \unhbox \voidb@x \penalty \@M \ {}lake
There are several movie scenes where a car falls into water together with its passengers. Calculate the torque with which a person must push the door in order to open it at the bottom of a lake if the bottom of the door's frame is $8,0 \mathrm{m}$ deep underwater. Assume that the door is rectangular with dimensions $132 \mathrm{cm} \times 87 \mathrm{cm}$ and opens along the vertical axis.
Katarína likes dramatic scenes on cliffs.
(3 points)6. Series 33. Year - 2. under pressure
The water level in bath reaches height $15{,} \mathrm{cm}$. The plug has a shape of a conical frustum which perfectly fits the hole in the base of the bath. Its radii of bases are $16,0 \mathrm{mm}$ and $15,0 \mathrm{mm}$ and its mass is $11,0 \mathrm{g}$. What force does the bath bottom act on the plug? Assume that the drain pipe below contains air of atmospheric pressure.
Jindra felt pressure to think simple problems up.
(12 points)6. Series 33. Year - E. viscosity
Measure viscosity (in $\textrm{Pa}\cdot\textrm{s}$) of two different oils using Stokes' method.
Jáchym stole Jirka's idea to steal this problem from labs.
(10 points)5. Series 33. Year - S. min and max
We are sorry. This type of task is not translated to English.
They had to wait a lot for Karel.
(5 points)4. Series 33. Year - 3. uuu-pipe
What period of small oscillations will water in a glass container (shown on the picture) have? The dimensions of the container and the equilibrium position of water are shown. Assume that there is room temperature and standard pressure and that water is perfectly incompressible.
Karel was thinking about U-pipes again.