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Problem I.E . . . dense ice 13 points; (chybí statistiky)
Measure the density of ice.

Karel’s previous ice-problem was rejected, so he came up with another one.

Introduction
At first glance, it may seem that this is an effortless task. However, the ice melts quickly, which
can be partially eliminated by cooling the instruments used for the measurements, but the
experiment is still very demanding to perform accurately. We will present three methods by
which ice density can be determined and evaluate their accuracy.

The density ϱ (mass) can be determined as the ratio of the mass m to the volume V

ϱ = m

V
. (1)

We can measure volume in several ways. The easiest is to measure the dimensions of the
solid and calculate the volume. It is also possible to determine the volume by immersion in
a liquid. However, since the ice has a lower density than water, you either need to tuck it under
the surface or use a liquid with a lower density (such as oil).

Another possibility is to use Archimedes’ law in the form

V = m

ϱk
.

Here we will need to add weight to the ice to make it sink and modify the above formula
appropriately. The derivation of these relations can be found in the appendix at the end of this
solution.

Methods of measurement
1st method – determining volume by cube dimensions The easiest way to determine
the density of ice is to measure its mass and volume and then calculate it using the formula 1.

Two cylinder-shaped pieces of ice were used for the experiment. One was very small, about
the size of a regular ice cube, and a metal container with a circular base with a diameter of 12 cm
was used to make the other.

We measured the diameter of the trim piece by moving a ruler around the base and trying
to place it in the center until we had measured the most significant distance (the diameter
being the longest side of the circle). Conversely, we measured the height by trying to find the
shortest (i.e., perpendicular) line joining the two figures. In this way, we significantly increased
the accuracy of both measurements. A ruler was used for the measurements, and we estimated
the measurement error to be 0.2 cm. Usually, the size of the smallest piece (or half of it) is
taken as the error. In this case, however, we are measuring an uneven surface (the portion of
ice we have created is not ideal). The height and diameter may differ at different places on the
cylinder, so we estimated the measurement error to be slightly larger.

To measure the diameter of the larger cylinder, we needed to find the center of the base.
We did this by drawing a line on the ice with a marker, finding its center, and drawing a per-
pendicular line through it. The intersection of the two axes thus formed was then taken as the
center. The diameter of the base itself was measured so that the ruler’s edge passed through
three points, one of which was the center, and the other two points lay on the edge of the base.
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This measurement was then made four times. The height of the cylinder was measured in the
same manner as for the small ice, the measurement being made three times.

The weight was always determined using a kitchen scale to an accuracy of 1 g. This accuracy
is very low; it would have been better to use a finer technical scale.

If we had chosen this first method of measurement, it would have been advisable to make
considerably more measurements and determine the ice density as the average. In addition to
repeating the experiment, it would be a good idea to choose a better shape of ice maker that
would be easier to measure the dimensions, for example, a sizeable cube-shaped mold. The
larger the ice, the smaller the relative error in calculating its dimensions.

2nd method – determination of volume by immersion in liquid Another way of
measuring volume is to immerse an object in a liquid in a graduated cylinder, on the scale
of which we read how much liquid the object has displaced and, therefore, what its volume
is. To do this, a liquid of lower density than the body must completely submerge the object.
In the case of ice, which has a density of about 0.917 g·cm−3,1 we cannot use water (with
density 0.997 g·cm−3). The lower density is, for example, that of rubbing alcohol or rapeseed
oil, which we have used.

To make the results more accurate, we need to prevent some ice from melting. All instru-
ments were, therefore, pre-cooled in a refrigerator. We also used chilled wooden tongs to handle
the ice.

We poured chilled rapeseed oil into a graduated cylinder and read the volume from a scale.
We used a kitchen scale to determine the weight of several pieces of ice and recorded everything
in a table.

Since the ice cubes are relatively small, we used more of them per measurement (always
a random number of about 4-5 cubes), which also reduced the relative error in measuring the
weight or volume (the error was still 1 g, but instead of 9 g the ice weighed about 50 g). However,
we did not determine a single cube’s average weight or volume since the ice was formed so that
the cubes differed slightly from one another.

After weighing, we carefully transferred the ice with tongs (to avoid significant heat transfer
from our hands to the ice) into a graduated cylinder. If the cubes did not sink completely, we
pushed them gently under the surface using a cooking pot. Since rapeseed oil is less dense
than ice, the cubes did not float back up. Again, we used the scale on the graduated cylinder to
determine the volume of its contents. We consistently subtracted from the lower (or always from
the upper) meniscus so that the difference in these volumes corresponded to the importance of
the ice placed. We tried to proceed very quickly as the ice melted and the importance changed.

The uncertainty of the volume measurement is determined as the value of the smallest piece,
5 mm. The samples were quite large, so we could distinguish even half a bit. Still, the resulting
volume was obtained by the difference of these values, and the total error is then determined as
the square root of the sum of the squares of the errors of the two measurements,

√
2.52 + 2.52 .=

.= 4. Since a small error could have been introduced by misidentifying the position of the upper
or lower end of the surface, we decided to leave the error larger - corresponding to the size of
one slice.

1MIKULČÁK, Jiří. Mathematical, physical, and chemical tables for secondary schools. 14th ed. Prague:
SPN, 1985. Auxiliary books for pupils (State Pedagogical Publishing House).
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3rd method – determining density using Archimedes’ law The last possible approach,2
which we will present here, is to use Archimedes’ law. As can be seen from the formula 9, we can
use it to determine the volume of the submerged part of a body. Since ice has a lower density
than water, it will float on the surface and never completely submerge. For this reason, when
we created the ice, we added an object of a more significant, known density to the form (here,
we used three steel nails). The smaller weight might fall off as the ice melts if we let it freeze at
the ice’s edge. Therefore, it is advisable to freeze only part of the water, place a metal object
on the frozen surface, refill the ice container with water, and let it freeze again. This way, we
can put the body roughly in the middle of the ice.

We then put the ice piece with nails into the water container and let it slowly melt. As
the amount of ice diminished, the object slowly sank. We waited until such a part of the ice
had melted that the cube was completely submerged and floating under the surface so that the
buoyancy and gravitational forces were still in balance (i.e., the object was not yet falling to
the bottom).

At this point, we pulled the object out and placed it in an empty container. Here we left it
until all the ice had melted and then measured the water and nails mass.

Fig. 1: Ice

Results
1st method The small cylindrical ice cube used has a base diameter of (2.5 ± 0.2) cm and
a height of (2.2 ± 0.2) cm.

Calculate the volume from the formula

V = π
(

d

2

)2
h .

The piece of ice used had a mass of m = 9 g. Now we can calculate the density from the
formula 1.

As part of the measurement, we need to calculate the error of the result. If we know the errors
of the measured quantities, we can use them and the formula for calculating the quantity A to

2Inspired by the text http://fyzikalniolympiada.cz/archiv/58/fo58d1_r.pdf
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calculate its error σA. For simple formulas where all quantities occur only in the product or
proportion, the relative error3 of the quantity A is the square root of the sum of the squares of
the relative errors of the measurands. If any of these quantities occurs to the n-th power, we
take the relative error of that quantity n times

σA = A

√∑ (
nσxi

xi

)2
. (2)

Here, n represents the power with which this quantity occurs in the formula.
In this case, the relation for calculating the error is of the form.

σϱ = ϱ

√(
σh

h

)2
+

(2σd

d

)2
+

(
σm

m

)2
.

Using this procedure, we determined the density of ice as ϱled1 = (0.8 ± 0.3) g·cm−3. We
rounded the error to one valid digit, then rounded the result so that its last digit was of the
same order as the error.

For the large cylinder, the following values were measured (listed in the table with the error
obtained as the square root of the sum of the square of the standard deviation and the gauge
error).

Tab. 1: Dimensions of ice of mass m = 354 g in the shape of a large cylinder.

č. d

cm
h

cm
1 12.5 3.0
2 12.6 3.1
3 12.8 2.7
4 – 2.9

diameter 12.6 ± 0.1 2.9 ± 0.2

The volume was again calculated from the formula

V = π
(

d

2

)2
h .

And density as the ratio of mass to volume. The error was again determined as

σϱ = ϱ

√(
σh

h

)2
+

(2σd

d

)2
+

(
σm

m

)2
.

The resulting density value is then ϱled1large = (0.94 ± 0.06) g·cm−3.
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Tab. 2: Experimentally determined ice density values. The volume of ice was measured by
immersion in rapeseed oil.

No m

g
Vbez ledu

cm3
Vs ledem

cm3
Vled

cm3
ϱ

g·cm−3

1 32 150 185 35 0, 9 ± 0, 1
2 42 235 280 45 0, 9 ± 0, 1
3 44 437 485 48 0, 9 ± 0, 1
4 46 350 400 50 0, 92 ± 0, 09
5 51 415 470 55 0, 93 ± 0, 09
6 43 420 465 45 1, 0 ± 0, 1

2nd method The measurements with rapeseed oil were performed 6 times in total, and the
measured values are shown in table 2.

We calculate the error as

σϱ = ϱ

√(
σm

m

)2
+

(
σV

V

)2
. (3)

We determine the density as the average of the values from the individual measurements,
where we do not include the last measured (sixth) value since it deviates from the others
(the value falls outside the 3sigma interval). This measurement probably has some significant
error, which would unnecessarily bias our result. The mean value should be supplemented with
a standard deviation, i.e., an indication of how far the measured values differ from the mean.
The formula defines this quantity.

σsm.odch. =

√∑ (x̄ − xi)2

n (n − 1) .

We must not forget the error of the method, which we have listed as the error of the
individual densities in the previous table. Since we have always made measurements for different
amounts of ice, the method error is reduced

√
N times to 0.1 g·cm−3/

√
6 = 0.04 g·cm−3 (the

values are not always the same). The systematic error of the average value is smaller since the
systematic errors caused by, for example, the cube always weighing 7.4 g and the scale showing
an inaccurate value of 8 g (same with volume) cancel out when averaging. There were probably
cases where the weight (or volume) was rounded up.

So the total error is σc =
√

σ2
sm.odch + σ2

m =
√

0.042 + 0.0042 = 0.04 g·cm−3. We could also
notice in the calculation that the standard deviation is negligible compared to the error of the
method.

The density thus determined has the value ϱled2 = (0.92 ± 0.04) g·cm−3.

3. method The experiment with a weight in a piece of ice was performed twice, each time
with three steel nails. We have reported the data in table 3, including the results calculated

3Relative error is the ratio of the absolute error of the measurand to its value.
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from the formula 10. We substituted densities from the tables ϱv = ϱwater = 0.997 g·cm−3 and
ϱz = ϱocel = 7.850 g·cm−3. We determined the error using the error transfer formula 2 as

σ = ϱ

√(
σmv

mv

)2
+

(
σmz

mz

)2
.

Tab. 3: Experimentally determined values of ice density using Archimedes’ law.

No mz

g
mv

g
ϱ

g·cm−3
ϱschybou

g·cm−3

1 14 109 0,899 2 0, 90 ± 0, 06
2 14 106 0,896 6 0, 90 ± 0, 06

For a more accurate measurement, we would still need to measure the temperature of the
water bath to get the correct value for its density (likewise, we would need to recalculate the
density of steel for the temperature 0 ◦C that the ice had. In our case, however, the error due
to the density at 25 ◦C is negligible compared to the error in determining the mass.

Discussion
The first method is wildly inaccurate for a smaller piece of ice, and we determined the density as
ϱled1 = (0.8 ± 0.3) g·cm−3. Thus, within the margin of error, our determined density may be as
large as, or even more significant than, the density of water. If we were to measure the density of
ice by this method, we would need to make many more measurements and use better-measuring
instruments. We can also significantly improve by using a larger piece of ice. For a cylinder with
more than 4 times the diameter of the base, we got a value of ϱled1large = (0.94 ± 0.06) g·cm−3,
so our error was reduced by order of magnitude.

The density of the ice determined by the oil immersion method has a value of ϱled2 =
= (0.922 ± 0.004) g·cm−3. Within the error, our measured ice density almost coincides with
the tabulated value of4 ϱtab. = 0.917 g/cm3.

In the second method, we obtain a reasonably accurate value (unlike the first method). One
way to increase the accuracy would be to use engineering scales that would give us more valid
digits. However, when we look more closely at the formula for calculating the error and try to
plug in error in the mass measurement 0 g, we see that the overall error is almost unchanged.
Therefore, to reduce the general error, we need to refine the graduated cylinder scale or use
a different method of measuring density (see the third method).

The deviations from the actual value may have been due to some systematic errors that
are not canceled out by repeated measurements - these are errors caused mainly by the rapid
thawing of the ice. When measuring the weight, the ice thaws, and the tongs pick up a cube
slightly lighter than its original weight. This should increase the measured density (we then
put a cube with a smaller volume into the oil). The ice then melts even in water. Since ice is
less dense than water, when it partially thaws, the volume decreases, which will also increase
the measured value. A slight reduction in volume also occurs because some of the oil sticks to
the rod when the ice cubes sink. These measurement errors may be one of the reasons why

4MIKULČÁK, Jiří. Mathematical, physical, and chemical tables for secondary schools. 14th ed. Prague:
SPN, 1985. Auxiliary books for pupils (State Pedagogical Publishing House).

6



Fyzikální korespondenční seminář MFF UK Řešení XXXVI.I.E

our measured value is larger than the tabulated value in almost all measurements. However, if
we proceed quickly and have all instruments and oil subcooled to the lowest possible temper-
ature, these differences should be almost negligible compared to the inaccuracy of the gauges.
Moreover, when ice cubes are formed, tiny bubbles enter the cubes, reducing the overall density
so that the resulting deviation from the actual value is not too significant. A systematic error
probably contributed to the slight deviation from the tabulated value (even within the error).
Otherwise, the measurement is relatively accurate, and the result corresponds reasonably well
to the expected (tabulated) value.

A third method, which does not measure volume and uses Archimedes’ law to determine
density, might be the best. Here we are only measuring mass. The accuracy of this measurement
can easily be improved by using engineering scales. The disadvantage of this method is the need
for a weight of known density (if we were to verify it experimentally at home using, for example,
the second method, we would again need to measure the volume, which would reduce our
accuracy). With this method, we have determined the density as ϱled3 = (0.90 ± 0.06) g·cm−3.
Both measurements may seem to yield a density value significantly less than that given in the
tables. Still, the result is burdened with an error that makes it impossible to determine the
exact value. The possible lower density may have been due to the more significant number of
bubbles in the ice formed, which reduced the resulting density somewhat. The increased bubble
content may be due, among other things, to the presence of nails that interfere with the ice’s
natural freezing. This would be suggested by the observation that we did not observe such
a large number of bubbles in the second method, where the ice froze independently.

If better scales were used, the measurement error would be comparable to the standard
deviation of the second method.

The third method, although more accurate in measuring instruments than the second, can
be more demanding in terms of speed and experimenter error - the ice needs to be pulled out
at the right time.

Closure
The first method of determining ice volume using measured dimensions was very inaccurate.
The result ϱled1 = (0.8 ± 0.3) g·cm−3 was burdened with a large error. For a cylinder many
times larger, however, we obtained a good result ϱled1large = (0.94 ± 0.06) g·cm−3. The inaccu-
racy of the volume measurement was improved in the second method, with the error reduced by
order of magnitude when measuring the volume in the graduated cylinder. The resulting den-
sity ϱled2 = (0.92 ± 0.04) g·cm−3 within the error nearly matches the tabulated value ϱled-table =
= 0.917 g·cm−3. The third method determined the ice density as ϱled3 = (0.90 ± 0.06) g·cm−3.

Addendum
To determine the density of a body, Archimedes’ law can be used, which we present here in its
familiar form: a body immersed in a liquid is supercharged by a force whose magnitude is equal
to the gravity of the liquid displaced by the body. We shall now derive this statement, and by
calculation, we shall obtain the formula we shall use for the experiment. On a body of mass m
in the homogeneous gravitational field of the Earth with a gravitational acceleration g, there is
a gravitational force which we determine from the formula.

Fg = mg . (4)
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However, if we immerse this body in a liquid, it will also be subject to a buoyant force. The
molecules of the liquid are also in the Earth’s gravitational field, and a gravitational force acts
on a layer of liquid of density ϱk at a distance h from the surface.

Fg = mg = ϱkS hg , (5)
Where S is the size of the cross-sectional area of this column of liquid. The fluid, therefore,
exerts pressure on the layer we are examining.

pg = mg = ϱkhg . (6)
Let us now imaginatively cut the body immersed in this liquid into small cylinders of cross-

section dS perpendicular to the surface. On the upper base of the i-th cylinder, which is at
a height h1, the fluid exerts a force F1, while on the lower base at a depth h2, it exerts a force
F2. The resultant buoyant force on this cylinder is obtained as the difference between these two
forces (geometrically, it is a sum since the forces act in opposition to each other - the liquid
exerts pressure on the upper platform in the direction of the bottom, while the lower platform
exerts a force that tends to lift the body). We, therefore, determine the force on such a small
cylinder as

Fvzi = F2 − F1 = ϱkg dSh2 − ϱkg dSh1 = ϱkg dS(h2 − h1) . (7)
The total lift force on the roller is then obtained by summing the forces on the individual

rollers. If we have made the rollers infinitesimally small, the sum goes into the integral, but it
is still intuitive to view the integral as the sum of

Fvz =
∫

ϱkg∆h dS = ϱkg

∫
∆h dS = ϱkgV ′ , (8)

V ′ is the volume of the body’s part immersed in the liquid.
The body remains at rest (or in uniform rectilinear motion) if the resultant of all forces

acting on it is zero. Therefore, the body will become stationary by equalizing the gravitational
and buoyant forces.

Fvz = Fg

ϱkgV ′ = mg (9)

We see that we can only determine the volume of the submerged part of the body in this
way. If we were to immerse the ice in water, it would only be partially submerged due to its
lower density. For complete immersion, we need to add weight to the ice, increasing the total
density of the resulting body. We now show how the relation 9 we derived changes.

If the weight in the ice is light enough, the body will not sink completely. It will sink below
the surface only after some ice has melted. Let us focus on this moment when the body is fully
submerged, but the forces are still in equilibrium (the body does not sink but floats). At this
point, the total volume of the body can be determined from our formula 9.

V = m

ϱk
,

Which we can modify using the fact that the mass m is the sum of the mass of the weights mz
and the water/ice ml, Vv is the volume of the water, Vz is the volume of the weights, and ϱz is

8



Fyzikální korespondenční seminář MFF UK Řešení XXXVI.I.E

the density of the weights. The formula then takes the form by substituting the density of the
liquid ϱk for the density of the water ϱv.

ϱled = ml

Vl
= ml

V − Vz
= ml

m
ϱv

− Vz
= ml

m
ϱv

− Vz

1
Vv
1

Vv

= ϱv

1 + mzϱv
mv

(
1

ϱv
− 1

ϱz

) . (10)
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